DESCRIPTION

TECHNICAL DATA

Housing	Aluminum casing with cooling fins
Connector	Tyco AMPMODU WP 121 pins
Housing dimensions	$95.1 \times 179 \times 39.3 \mathrm{~mm}$ (housing) $110.4 \times 179 \times 39.3 \mathrm{~mm}$ (incl. plug)
Weight	480 g
Temperature range (ISO 16750-4 compliant)	-40 to $+85^{\circ} \mathrm{C}$
Environmental protection	IP68
Current consumption	67 mA
Over-current protection	40 A (see page 3)
Total inputs and outputs	38 (18 inputs; 10 I/O's; 10 outputs) Inputs
Configurable as: Digital, positive encoder signals Analog (0..11.4 / 33.68 V) Digital, negative encoder signals Frequency inputs	

Outputs	Configurable as: Digital, positive switching (High- Side) Depends on the equipment: PWM output up to 500 Hz Constant voltage source 5 V Const. current source max. 200 mA
Operating voltage	$\begin{aligned} & 9-32 \mathrm{~V} \\ & 12 \mathrm{~V} \text { (code B) and } 24 \mathrm{~V} \text { (code E) } \\ & \text { according ISO } 16750-2 \text { compliant } \end{aligned}$
Starting voltage	8 V
Overvoltage protection	$\geq 33 \mathrm{~V}$
Undervoltage cut-off	8 V
Quiescent current	$3,35 \mathrm{~mA}($ at 24 V); $0,3 \mathrm{~mA}$ (at 12 V)
Reverse polarity protection	Yes
CAN Interfaces	CAN Interface 2.0 A/B, ISO 11898 compliant
Baudrate	Up to max. 1000 kbps default: 125 kbps

INPUT FEATURES - SUMMARY

$\left.\begin{array}{lllllll}\hline \text { Pin 6, 7, 102, 106 } & \text { Analog inputs } & & & \text { Pin 21, 23, 24 } & & \text { Analog inputs } \\ & \text { 0...33 } \mathrm{V}\end{array}\right)$

OUTPUT FEATURES - SUMMARY

$\left.\begin{array}{llllllll}\hline \begin{array}{l}\text { Pin 48, 50, 52, 54, } \\ \text { 56, 58, 60, 62, 75, } \\ \text { 77, 79, 81 } \\ \text { (VNQ5050) }\end{array} & \begin{array}{l}\text { Protective circuit for } \\ \text { inductive loads }\end{array} & \begin{array}{l}\text { Optionally } \\ \text { integrated }\end{array} & & \text { Pin 44, 111 } & & \text { Wire fault diagnostics }\end{array} \begin{array}{l}\text { Possible via } \\ \text { current sense }\end{array}\right]$
**ATTENTION: The maximum current load capacity of the total module amounts 40 A , if the terminals 30 _1 (pin 119) and 30_2 (pin 120) are connected.

PIN ASSIGNMENT POWER SUPPLY AND INTERFACES

Pin	Description	Pin	Description
15	CAN bus 2 high	105	Battery/ignition contact KL 15 GSM accoding to DIN 72552, optional as DI
16, 17, 18	RS 485 B		
20	CAN bus 1 low	113	Battery/ignition contact KL 15 according to DIN 72552, optional as DI
22	CAN bus 0 high	119	KL 30_1: supply voltage for outputs and operating voltage for CPU
27	5 V sensor output		
34	CAN bus 2 low	120	KL 30_2: supply voltage for outputs and operating voltage for CPU
35, 36, 37	RS 485 A		
39	CAN bus 1 high	$1,3,4,10,11,12,28,29,30,31$, $45,46,47,49,51,53,55,57,59$, 61, 63, 64, 65, 66, 68, 70, 72, 74, $76,78,80,82,83,84,85,86,89$, $90,91,92,93,94,97,99,100$, 101, 103, 115, 117, 118	Ground
41	CAN bus 0 low		
98	5 V sensor output		

DATASHEET M3600 1.300.

PIN ASSIGNMENT INPUTS AND OUTPUTS

Alternative functions like frequency/current or pull-up inputs are depending on assembly options (see table on page 5).

Pin	Signal	Description	Pin	Signal	Description
6	AIM_30V_X6	Analog input 0-33 V	67	DO_PWM_O8 PWM_O8 AI_SENS_PWM_O8	Digital output DO8 with PWM capability and INA current sense
7	AIM_30V_X7	Analog input 0-33V			
8	AIM_RPM	Frequency input	69	DO_PWM_O7 PWM_O7 AI_SENS_PWM_O7	Digital output DO7 with PWM capability and INA current sense
9	AIM_INPUT1	Analog input 0-11.3 V			
13	AIM_PT200_1P	Pull-up input PT200/PT1000			
14	AIM_PT200_2P	Pull-up input PT200/PT1000	71	DO_PWM_O6 PWM_O6 AI_SENS_PWM_O6	Digital output DO6 with PWM capability and INA current sense
19	AIM_14 DIM 14	Analog input $0-11.3 \mathrm{~V}$ or digital input 0-11.3 V			
21	AIM I3 DIM_I3	Analog input $0-33 \mathrm{~V}$ or digital input	73	DO_PWM_O5 PWM_O5 AI_SENS_PWM_O5	Digital output DO5 with PWM capability and INA current sense
23	$\begin{aligned} & \text { AIM_I2 } \\ & \text { DIM_I2 } \end{aligned}$	Analog input $0-33 \mathrm{~V}$ or digital input	75	$\begin{aligned} & \text { AIM_IO8 } \\ & \text { DIM_IO8 } \\ & \text { DOM_IO8 } \\ & \text { AIM_CUR_IO8 } \end{aligned}$	Analog input IO8 $0-11.4 \mathrm{~V}$ or digital input or digital output with current sense
24	AIM_I1 DIM_I1	Analog input 0-33 V or digital input			
32	AIM_PT200_4P	Pull-up input PT200/PT1000	77	$\begin{aligned} & \text { AIM_IO7 } \\ & \text { DIM_IO7 } \\ & \text { DOM_IO7 } \\ & \text { AIM_CUR_IO7 } \end{aligned}$	Analog input IO7 0-11.4 V or digital input or digital output with current sense
33	AIM_PT200_3P	Pull-up input PT200/PT1000			
38	AIM_I8	Analog input 0-11.3 V or			
	DIM 18	digita	79	AIM_IO6 DIM_IO6 DOM_IO6 AIM_CUR_IO6	Analog input IO6 $0-11.4 \mathrm{~V}$ or digital input or digital output with current sense
40	AIM_17 DIM_17	Analog input 0-11.3 V or digital input 0-11.3 V			
42	AIM_I6	Analog input 0-11.3 V or digital input 0-11.3 V			
	DIM_16		81	AIM_IO5DIM_IO5DOM_IO5AIM_CUR_IO5	Analog input IO5 0-11.4 V or digital input or digital output with current sense
43	AIM_I5 DIM_I5	Analog input 0-11.3 V or digital input 0-11.3 V			
48	DOM_O1 AIM CUR 01	Digital output O 1 with current sense	102	AIM_30V_X102	Analog input 0-33 V
50			106	AIM_30V_X106	Analog input 0-33 V
	AIM_CUR_O2	current sense	108	DI_RPM_2	Input for inductive rotary encoders
52	DOM_03	Digital output O3 with			
	AIM_CUR_O3	current sense	111	DOM_PANEL_ON	Digital output VB Panel with max. 200 mA
54	DOM_04 AIM_C̄UR_O4	Digital output O4 with current sense	114	$\begin{aligned} & \text { DO_NOX } \\ & \text { AI_NOX } \end{aligned}$	Digital output NOX with current sense
56	$\begin{aligned} & \text { AIM_IO3 } \\ & \text { DIM_IO3 } \\ & \text { DOM_IO3 } \\ & \text { AIM_CUR_IO3 } \end{aligned}$	Analog input IO3 $0-11.4 \mathrm{~V}$ or digital input or digital output with current sense	116	Al_OUT_CB_1 DOM_OUT_CB_1 AI_CUR_CB_1	Analog input $0-11.3 \mathrm{~V}$ or digital output CB1 with current sense
58	$\begin{aligned} & \text { AIM_IO4 } \\ & \text { DIM_IO4 } \\ & \text { DOM_IO4 } \\ & \text { AIM_CUR_IO4 } \end{aligned}$	Analog input IO4 0-11.4 V or digital input or digital output with current sense	121	Al_OUT_CB_2 DOM_OUT_CB_2 AI_CUR_CB̄_2	Analog input $0-11.3 \mathrm{~V}$ or digital output CB1 with current sense
60	AIM_IO2 DIM_IO2 DOM_IO2 AIM_CUR_IO2	Analog input IO2 $0-11.4 \mathrm{~V}$ or digital input or digital output with current sense			
62	AIM_IO1 DIM_IO1 DOM_IO1 AIM_CUR_IO1	Analog input $\mathrm{O} 10-11.4 \mathrm{~V}$ or digital input or digital output with current sense			

PIN - FEATURE MAP

I/O				
Pin	Analog input	Digital input	Digital output	
56	AIM_IO3	DIM_IO3	DOM_IO3	
58	AIM_IO4	DIM_IO4	DOM_IO4	
60	AIM_IO2	DIM_IO2	DOM_IO2	
62	AIM_IO1	DIM_IO1	DOM_IO1	
75	AIM_IO8	DIM_IO8	DOM_IO8	
77	AIM_IO7	DIM_IO7	DOM_IO7	
79	AIM_IO6	DIM_IO6	DOM_IO6	
81	AIM_IO5	DIM_IO5	DOM_IO5	
116	AI_OUT_CB_1		DOM_OUT_CB_1	
121	AI_OUT_CB_2		DOM_OUT_CB_2	

Analog/Digital inputs			
Pin	Analog Input	Digital input	Description
6	AIM_30V_X6		$0-33 \mathrm{~V}$
7	AIM_30V_X7		$0-33 \mathrm{~V}$
8	AIM_RPM	DI_RPM	$0-11.3 \mathrm{~V}$
9	AIM_INPUT1		$0-11.3 \mathrm{~V}$
13	AIM_PT200_1P		PT200/PT1000 PU
14	AIM_PT200_2P		PT200/PT1000 PU
19	AIM_14	DIM_14	$0-11.3 \mathrm{~V}$
21	AIM_13	DIM_13	$0-33 \mathrm{~V}$
23	AIM_12	DIM_12	$0-33 \mathrm{~V}$
24	AIM_11	DIM_I1	$0-33 \mathrm{~V}$
32	AIM_PT200_4P		PT200/PT1000 PU
33	AIM_PT200_3P		PT200/PT1000 PU
38	AIM_18	DIM_18	$0-11.3 \mathrm{~V}$
40	AIM_17	DIM_17	$0-11.3 \mathrm{~V}$
42	AIM_16	DIM_16	$0-11.3 \mathrm{~V}$
43	AIM_15	DIM_15	$0-11.3 \mathrm{~V}$
102	AIM_30V_X102		$0-33 \mathrm{~V}$
106	AIM_30V_X106		$0-33 \mathrm{~V}$

Digital Output		
Pin	Digital output	PWM output
48	DOM_O1	
50	DOM_O2	
52	DOM_O3	
54	DOM_O4	
67	DO_PWM_O8	PWM_08
69	DO_PWM_O7	PWM_O7
71	DO_PWM_O6	PWM_O6
73	DO_PWM_O5	PWM_O5
111	DOM_PANEL_ON	
114	DO_NOX	

Power supply		
Pin	Signal	Description
105	DI_KL15_GSM	Battery/ignition contact 15 according to DIN 72552/Digital input (optional)
113	DI_KL15	Battery/ignition contact 15 according to DIN 72552/Digital input (optional)
119	AIM_KL_30_1	Supply voltage/Analog input (optional)
120	AIM_KL_30_2	Supply voltage/Analog input (optional)
see page 3		Ground/contact 31 according to DIN 72552

PINS - WITHOUT EXTERNAL CONNECTION

Pins

```
2, 5, 25, 26, 87, 88, 95, 96, 104, 107, 110, 112
```


PERFORMANCE TESTS HIGH-SIDE-DRIVER OUTPUTS (MAXIMUM RATINGS)

Test without PWM (max. 2 channels per high side driver) $\mathrm{T}=85^{\circ} \mathrm{C}$

Load	Switched Outputs	Endurance [min]
$4 \times 4 \mathrm{~A}$	O1-O8; IO1-IO8	5
$2 \times 5 \mathrm{~A}$	O7, IO7	continuous
15 A	IO_CB1	continuous
15 A	IO_CB2	5
22 A	NOX_B_P	5
$4 \times 3 \mathrm{~A}$	O1,O2,O3,O4	continuous

Test with PWM (max. 2 channels per high side driver) $\mathrm{T}=85^{\circ} \mathrm{C}$
 PWM (200Hz, Duty cycle 90\%)

Load Switched Outputs Endurance [min

5 A	O	continuous
$4 \times 2,5 \mathrm{~A}$	$\mathrm{O5}, \mathrm{O6}, \mathrm{O7,08}$	continuous
$4 \times 3 \mathrm{~A}$	$\mathrm{O5}, \mathrm{O6}, \mathrm{O7,O8}$	5

DATASHEET M3600 1.300.

BLOCK FUNCTION DIAGRAM

TECHNICAL DRAWING

MRS ELECTRONIC

DATASHEET M3600 1.300.

ASSEMBLY OPTIONS AND ORDER INFORMATION

Order number	Inputs						Outputs			CAN bus		Serial interface	$\begin{aligned} & \mathrm{DC/} \\ & \mathrm{DC} \end{aligned}$			
							HighSpeed	LowSpeed								
	A Voltage 0... 33 V	B Voltage or frequency	$\begin{gathered} C \\ \text { Voltage } \\ 0-11,3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \text { Pull up } \end{gathered}$ $1 \mathrm{k} \Omega$	E Voltage or digital	F I/O’s (optionally as Analog-/digital input or digital output)				G Digital output	Digital output or PWM \leq 500 Hz	I Power supply ext. panel				5 Volt Ref.
1.300.300.00	$\begin{gathered} 6,7,102 \\ 106 \end{gathered}$	8	9, 108	$\begin{gathered} 13,14,32, \\ 33 \end{gathered}$	$\begin{aligned} & 19,21,23,24, \\ & 38,40,42,43 \end{aligned}$	$\begin{gathered} 56,58,60,62,75, \\ 77,79,81,116,121 \end{gathered}$	$\begin{gathered} 48,50, \\ 52,54, \\ 114 \end{gathered}$	$\begin{gathered} 67,69,71 \\ 73 \end{gathered}$	111	X		RS485	27, 98			

ACCESSORIES

Description	Order number
Programming tool MRS Developers Studio	1.100 .100 .09
Connector package M3600	114159
Crimp terminals Timer Junior $1.50-2.50 \mathrm{~mm}^{2}$	107665
Single seal Junior Power Timer $1.5 \mathrm{~mm}^{2}$	107304
Crimp terminal MQS $0.50-0.75 \mathrm{~mm}^{2}$	109949
PCAN-USB Interface	105358
Cable set M3600 for programming	501246
Cavity Plug package for M3600 CAN PLC	300972

MANUFACTURER

MRS Electronic GmbH \& Co. KG
Klaus-Gutsch-Str. 7
78628 Rottweil

WIRING AND CABLE ROUTING RECOMMENDATIONS

The electronic system and the power outputs of a control unit must be supplied by the same power supply system.

PWM outputs may not be connected with each other or bypassed.

The pins (I/Os) can be used in combination and may not be switched externally against supply voltage.

WIRING AND CABLE ROUTING RECOMMENDATIONS

Higside outputs may only be switched to ground.

The CAN bus communication is the main communication between the control unit and the vehicle. Therefore, connect the CAN bus with special care and check the correct communication with the vehicle to avoid undesired behavior.

SAFETY AND INSTALLATION INFORMATION

It is essential to read the instructions in full thoroughly before working with the device.
Please note and comply with the instructions in the operating instructions and the information in the device data sheet, see www.mrs-electronic.de Staff qualification: Only staff with the appropriate qualifications may work on this device or in its proximity.
SAFETY

WARNING! Danger as a result of a malfunction of the entire system.

Unforeseen reactions or malfunctions of the entire system may jeopardise the safety of people or the machine.

- Ensure that the device is equipped with the correct software and that the wiring and settings on the hardware are appropriate.

! WARNING! Danger as a result of unprotected moving components.

Unforeseen dangers may occur from the entire system when putting the device into operation and maintaining it.

- Switch the entire system off before carrying out any work and prevent it from unintentionally switching back on.
- Before putting the device into operation, ensure that the entire system and parts of the system are safe.
- The device should never be connected or separated under load or voltage.

CAUTION! Risk of burns from the housing.

The temperature of the device housing may be elevated.

- Do not touch the housing and let all system components cool before working on the system.

PROPER USE

The device is used to control or switch one or more electrical systems or sub-systems in motor vehicles and machines and may only be used for this purpose. The device may only be used in an industrial setting.

! WARNING!Danger caused by incorrect use.
 The device is only intended for use in motor vehicles and machines.

- Use in safety-related system parts for personal protection is not permitted.
- Do not use the device in areas where there is a risk of explosion.

Correct use:

- operating the device within the operating areas specified and approved in the associated data sheet.
- strict compliance with these instructions and no other actions which may jeopardise the safety of individuals or the functionality of the device.

Obligations of the manufacturer of entire systems

It is necessary to ensure that only functional devices are used. If devices fail or malfunction, they must be replaced immediately.
System developments, installation and the putting into operation of electrical systems may only be carried out by trained and experienced staff who are sufficiently familiar with the handling of the components used and the entire system.
It is necessary to ensure that the wiring and programming of the device does not lead to safety-related malfunctions of the entire system in the event of a failure or a malfunction. System behaviour of this type can lead to a danger to life or high levels of material damage.
The manufacturer of the entire system is responsible for the correct connection of the entire periphery (e.g. cable cross sections, correct selection/ connection of sensors/actuators).
Opening the device, making changes to the device and carrying out repairs are all prohibited. Changes or repairs made to the cabling can lead to dangerous malfunctions. Repairs may only be carried out by MRS.

Installation

The installation location must be selected so the device is exposed to as low a mechanical and thermal load as possible. The device may not be exposed to any chemical loads.
Install the device in such a manner that the plugs point downwards. This means condensation can flow off the device. Single seals on the cables/leads must be used to ensure that no water gets into the device.

Putting into operation

The device may only be put into operation by qualified staff. This may only occur when the status of the entire system corresponds to the applicable guidelines and regulations.

FAULT CORRECTION AND MAINTENANCE

i NOTE The device is maintenance-free and may not be opened.

- If the device has damage to the housing, latches, seals or flat plugs, it must be taken out of operation.

Fault correction and cleaning work may only be carried out with the power turned off. Remove the device to correct faults and to clean it.
Check the integrity of the housing and all flat plugs, connections and pins for mechanical damage, damage caused by overheating, insulation damage and corrosion. In the event of faulty switching, check the software, switches and settings.
Do not clean the device with high pressure cleaners or steam jets. Do not use aggressive solvents or abrasive substances.

